
TR05-0007

Final Report - A Programming Logic for
Distributed Systems

Mark Bickford and David Guaspari

June 30, 2005

.T A
P a fp4).oved +or Public Release

Distribution Unlimited

Prepared for:

Dr. Robert Herklotz
Air Force Office of Scientific Research

801 North Randolph Street
Room 732
Arlington, VA 22203-1977

Prepared by:
ATC-NY (Odyssey Research Associates)

Cornell Business & Technology Park
33 Thornwood Drive, Suite 500

Ithaca, NY 14850-1250

Contract No. FA9550-04-C-0106
CRDL No. 0001AC

20050715 008

REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-05-
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searc.hing existing data A ?

the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducin
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pt

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES CUVEH-U

I7 I Final Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Scores , A Logical Programming Environment for Distributed Systems FA9550-04-C-0106

6. AUTHOR(S)

Dr. David Guaspari

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Odyssey Research Associates REPORT NUMBER

DBA ATC - NY
33 Thornwood Drive
Ithaca, NY 14850-1250

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

ATC-NY and Cornell University are developing SCorES, a mathematically based tool to support the development of
demonstrably correct distributed Systems. SCorES extends to distributed and hybrid systems a paradigm for program
development that has been successful in the world of sequential programming-employing methods that are declarative (rathej
than operational) and constructive. Declarative methods permitsystems to be specified, analyzed, developed, and verified at
a conceptual level congenial to human designers. Constructive methods permit automatic code synthesis. Incorporating these
methods within the NuPrl environment provides powerful automated support for specifying, developing, verifying, and
synthesizing real-time distributed systems at a high level of abstraction.
This report describes two things: a prototype that supports automatic code generation from proofs in a domain-specific logic
of distributed systems (one that does not model real-time); an extension of that logic to the domain of hybrid systems, which
may contain variables that vary continuously in real time. We demonstrate the code generator by deriving a verifiably
correct leader election protocol; and we demonstrate the logic of hybrid systems by applying it to a mutual exclusion
algorithm that generalizes Fischer's protocol to distributed systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACI
OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.181 - 1 0 5 Designed using Perform Pro, W ASIDI0R, Oct94

Abstract

ATC-NY and Cornell University are developing SCorES, a mathe-
matically based tool to support the development of demonstrably cor-
rect distributed systems. SCorES extends to distributed and hybrid
systems a paradigm for program development that has been success-
ful in the world of sequential programming-employing methods that
are declarative (rather than operational) and constructive. Declar-
ative methods permit systems to be specified, analyzed, developed,
and verified at a conceptual level congenial to human designers. Con-
structive methods permit automatic code synthesis. Incorporating
these methods within the NuPrl environment provides powerful auto-
mated support for specifying, developing, verifying, and synthesizing
real-time distributed systems at a high level of abstraction.

This report describes two things: a prototype that supports au-
tomatic code generation from proofs in a domain-specific logic of dis-
tributed systems (one that does not model real-time); an extension of
that logic to the domain of hybrid systems, which may contain vari-
ables that vary continuously in real time. We demonstrate the code
generator by deriving a verifiably correct leader election protocol; and
we demonstrate the logic of hybrid systems by applying it to a mutual
exclusion algorithm that generalizes Fischer's protocol to distributed
systems.

Contents

1 Introduction 1

2 Background: message automata and event structures 3
2.1 Event structures 5
2.2 Message Automata 7
2.3 Base-case rules 8
2.4 Example: two-phase handshake 9
2.5 Event Structure Patterns 11
2.6 ESP Example 15

3 Generating code from message automata 17
3.1 Design of the generated code 18

3.1.1 Links 18
3.1.2 Nodes 19

3.2 Implementation of the code generator 20
3.2.1 Scope 20
3.2.2 Code generation 21

3.3 Foundations 21

4 A logic for hybrid systems 22
4.1 Hybrid event structures 22
4.2 Hybrid message automata 24

4.2.1 Clauses and logical rules 25
4.2.2 Code generation for hybrid message automata 26
4.2.3 Timeliness 27

4.3 Methodology 28
4.4 Example: Leader election in a ring 30
4.5 Example: A generalization of Fischer's protocol 31

4.5.1 Fischer's Protocol 31
4.5.2 A distributed version 32
4.5.3 Lessons learned 33

5 Results and Discussion 38
5.1 Phase I 38
5.2 Phase II 39

5.2.1 The formal model 39

5.2.2 Proof methods 39
5.2.3 Code generation 40

6 Bibliography 40

A Design of the generated code 45
A.1 The package for a link 46

A.1.1 Tags and tagged values 47
A.1.2 The interface Sender 48
A.1.3 The interface Receiver 48
A.1.4 Default implementation of Sender 49
A.1.5 Default implementation of Receiver link 50

A.2 The package for a node 53
A.2.1 Data members 53
A.2.2 Constructing a Node 54
A.2.3 Auxiliary operations 55
A.2.4 The main loop 57

A.3 The package note 59

B Code for leader election in a ring 60
B.1 Configuration file 60
B.2 Package a 60

B.2.1 Class Main 60
B.2.2 Class Node 61

B.3 Package aXbXl. 64
B.3.1 Interface Receiver 64
B.3.2 Class rcv 64
B.3.3 Interface Sender 67
B.3.4 Class send 67
B.3.5 Class Tag 68
B.3.6 Class Tagged 68
B.3.7 Class Tagged-vote 69

B.4 Package aXoutputXl. 69
B.4.1 Interface Sender 69
B.4.2 Class send 69
B.4.3 Interface Receiver 70
B.4.4 Class Tag 70
B.4.5 Class Tagged 70

B.4.6 Class Tagged-leader 70

C A verification of the sleep/wake/terminate protocol 71

List of Figures

1 A simple message automaton 8
2 Successive denotations of x 24
3 A trajectory for x 25
4 The states of a node 32
5 Distributed Fischer's Protocol 33
6 Preconditions and effects of transitions 34
7 One round of the protocol 36

1 Introduction

Distributed systems, now vital to our civilian and military infrastructure,
have steadily become more complex-and therefore more difficult to under-
stand, implement, and maintain. As argued in [9], there is no scientific basis
for believing that any testing method, or any model of software reliability,
can be used to show that a complex software system is "ultrareliable"--e.g.,
has a failure rate of no more than 10- 8 /hour. Therefore, if one wishes to
make scientific case that a system is ultrareliable, crucial parts of the ev-
idence must come, not from after the fact testing, but from mathematical
correctness arguments.

Pioneering work on timed automata and I/O automata (e.g., [351) has
demonstrated the possibility of modeling and analyzing distributed and real-
time behaviors mathematically; but great effort is needed to apply current
techniques. In our view, these techniques present unnecessary difficulties be-
cause they are insufficiently abstract and because they do not formulate the
mathematical tasks in their most natural setting. A team at ATC-NY and
Cornell University has addressed that problem by extending to distributed
and hybrid systems a paradigm for program development that has been suc-
cessful in the world of sequential programming-employing methods that are
declarative (rather than operational) and constructive.

Declarative methods permit systems to be specified, analyzed, developed,
and verified at a conceptual level congenial to human designers. We devel-
oped our abstract model, the language of event structures, in close collabora-
tion with developers of distributed real-time systems. It can be thought of as
a generalization of "message sequence charts." This formalism greatly sim-
plifies the difficult intellectual task of reasoning about complex distributed
systems.

Constructive methods permit automatic code synthesis. We can thereby
develop a tool, SCorES, that provides powerful automated support for speci-
fying, developing, verifying, and synthesizing real-time distributed systems at
a high level of abstraction. In Phase I we have prototyped essential features
of SCorES.

The development paradigm that SCorES supports can be characterized
as follows:

* Specifications are stated declaratively, in a logical language.

We use the expressive higher-order logic of NuPrl, in which complex

liveness and safety requirements can be stated directly. Declarative
specifications are typically much easier to understand-and therefore
easier to state correctly-than operational specifications.

Development steps are inferences in a domain-specific logic.

The domain is that of event structures, which formalize and generalize
the notion of "message sequence charts" and provide a very natural
setting for specification and verification. Using logic as the only de-
velopment tool simplifies the developer's task: for example, no special
machinery is required to carry out refinement because, using our meth-
ods, refinement is merely logical implication.

* Logical inference is supported by editing, refinement, verification, and
information management tools.

FDL, the prototype formal digital library [13; 6; 5; 4], will provide in-
formation management for SCorES, and the NuPrl refiner will provide
automated proof support. FDL already includes a large body of useful
mathematics and proof tactics developed in NuPrl. In the course of de-
veloping components of SCorES we have added libraries of definitions,
theorems, and tactics specialized for distributed and hybrid systems.

* Programs are synthesized from proofs and are correct by construction.

Mathematically speaking, the developer proves that a system with the
desired behavior is possible. Such a proof, carried out constructively,
implicitly defines a "realizer"-an abstract program that has that be-
havior. We have prototyped the SCorES component that extracts the
realizer and uses it to synthesize a concrete implementation.

Previous work (done jointly at Cornell and ATC-NY) showed how to
extend this paradigm to realize those properties of distributed system that
make no reference to quantitative real time-for example, typical consensus
protocols. The domain of the underlying logic is an abstract representation
of distributed execution called an event structure. We have used the logic of
event structures to specify and derive demonstrably correct distributed algo-
rithms implementing nontrivial mutual exclusion and consensus algorithms
(TIP, Peterson, etc.). The specifications are clear and the proofs are the
simplest known to us.

The results of this project are:

2

A prototype code generator that extracts Java implementations from
the realizers on event structures.

The code generator automatically synthesizes correct implementations
of distributed non-real-time specifications. We demonstrate the code
generator by generating a verifiably correct implementation of a sym-
metric leader-election protocol in a ring.

D An extension of the domain of event structures to the domain of hy-
brid event structures, which model systems with real-time behavior,
including variables that evolve in continuous time.

We demonstrate the logic of hybrid event structures by applying it
to a mutual exclusion algorithm that generalizes Fischer's protocol to
distributed systems.

Section 2 summarizes the starting point of Phase I, the logic of message
automata developed in previous work. Section 3 describes the design of the
generated code at a high level, and discusses a number of design options that
a developer using a full-fledged implementation of SCorES should be able to
specify. Section 4 describes the theoretical work of Phase I, extending the
logic of message automata to include real-time and time-varying variables.
Section 5 summarizes our results.

There are three appendices. Sections A and B provide, respectively, a
detailed high level design of the generated code and a listing of the code
generated for a leader election protocol. Section C describes a verification,
using the SPIN model-checker, of a protocol used by the generated code to
suspend threads when they have no useful work to perform.

2 Background: message automata and event
structures

This section briefly describes the logic we have defined for distributed systems
without quantitative time and without continuous variables. Its basic notions
are event structures and message automata.

An event structure is an abstract algebraic construct that represents one
possible execution history of a distributed system. A specification of a system
asserts that all execution histories of the system satisfy some proposition. We
write specifications in the expressive higher-order logic of NuPrl, in which the

3

abstractions that developers use to understand their systems can be stated
directly.

The recommended way to use our formalism is to leave the message au-
tomata implicit. The user reasons in terms of event structures (message
sequence charts) and the system extracts corresponding automata. 1

Formally, a message automaton is a set of constraints that define a set
of event structures-all possible executions consistent with the constraints.
The constraints are written in a stylized way so that each one has a clear
operational meaning (send a message, update a variable, etc.)

The basic judgment in the logic of message automata, written A = €,
states that a message automaton A realizes a proposition ¢. This means that

e ¢ is true of every event structure consistent with A; and

* A is feasible-that is, the set of event structures consistent with A is
nonempty.

We define an operator " "for composing message automata. If A and B are
feasible and compatible, then A E B will also be feasible. (Compatibility is
a consistency condition briefly discussed below.) Syntactically, composition
is the union of all the defining clauses of A and of B; operationally, it means
executing A and B concurrently; and logically it corresponds to conjunction.

The clauses of a message automaton are compatible if they satisfy sim-
ple consistency conditions that may be checked syntactically. For example,
a clause stating that "only action a may change the value of variable x" is
not compatible with a clause stating that some different action b updates x.
Our compatibility rules correspond to compatibility requirements on I/O au-
tomata saying that they may be interconnected only by plugging the outputs
of one into the inputs of another.

Our domain specific logic of message automata consists of standard log-
ical rules for manipulating formulas, together with logical rules defining the
meaning of each of the constructs used to construct message automata.

Base cases: As indicated in section 2.2, a message automaton is a set
of clauses that initialize variables, state preconditions for actions, define the
effects of actions, etc. Each such clause, on its own, is a message automaton

'Because all the underlying machinery is built from NuPrl definitions, those definitions
are available to a user who could define a message automaton directly and prove that it
satisfies some specification. We don't recommend that, and currently provide no special
support for it.

4

that realizes certain logical formulas, which we'll call base-case formulas.
These judgments constitute the primitive domain specific rules of the logic.
Section 2.3 gives examples of some base-case formulas and their realizers.

Composition: The logical rule associated with composition says that if
all the following hold

A and B are compatible A ¢ B

we may conclude that

A e BH¢AV

Development can be carried out by various strategies, but every develop-
ment can be ordered top-down into a proof that reduces the system speci-
fication to some collection of base-case propositions. We can automatically
generate realizers for all the base-case propositions and then (if they are mu-
tually compatible) those realizers compose into a message automaton that
implements the specification.

2.1 Event structures

Following Lamport, we characterize a run of a program as a set of events.
Each event e is occurs at a unique location loc(e). A location is an ab-
straction of an agent or a process. Distinct locations do not share variables;
they may communicate with one another only by the events of sending and
receiving messages.

Each event has a unique kind denoted in one of the following ways

"* receive(l), a receive event on link 1;

"* local(a), a local event tagged by an identifier a.

Think of a as the name of an internal action of an automaton that
causes the event.

Instead of introducing a separate notion of a "send" event, we find it techni-
cally convenient to say that the effects of any event may include the sending
of messages. We insist that if e is a receive event, there is a unique event
sender(e) that sent the message received at e. The fully detailed model
also stipulates that each message is sent on some specified link.

5

The events occurring at any one location are totally ordered. We use
e < e' to mean that e and e' are events at the same location and e precedes
e'; and e < e' means, naturally, that e < e' or e = e'.

Following Lamport [31J, we may define a partial order on the set of all
events, called the causal order. It is the transitive closure of the sender-
receiver and predecessor relations. That is, the causal order -< is the least
relation on events such that e -< e' if any of the following is true:

"* e' is a receive event and e = sender(e')

"* loc(e) = loc(e') and e < e'

"* for some event e" we have e -< e" and e" -< e/.

Intuitively, if e -< e', then e is guaranteed to happen before e'; and if e causes
e', then @ --< e'.

If x and e are associated with the same location, "x when e" denotes the
value of the state variable x immediately before event e, and "x after e "
denotes its value immediately after e. (If they are not associated with the
same location, the two phrases are meaningless.)

Every event e also has a value val (e). The value of a receive event is the
message that is received. The value of a local event is a modeling artifact
that may be defined however we like.

In an event structure, the collection of events, locations, and variables
must satisfy a few simple axioms, including:

1. An event may send only a finite number of messages.

2. At any location, every event but the first has a unique predecessor event
(at that location). The predecessor of e is called pred(e).

3. The causal order is well-founded.

4. The observable value of a state variable is changed only by the occur-
rence of an event (at its location). That is,

x when e = x after pred(e)

which says that x cannot change in between events.

6

A powerful higher-order logic allows us to define and make use of arbi-
trarily complex derived concepts on top of the event structure model. For
example, we can define history operators that list or count previous events
having certain properties. We can also define useful notations for concepts
such as "event e changes state variable x."

2.2 Message Automata

Event structures are infinite objects, but they arise from the behaviors of

finite distributed programs. We call our representations of these finite pro-
grams message-automata. A message-automaton is a finite collection of dec-
larations and clauses each of which is assigned to a unique location. The
declarations provide the names and types of state variables, local actions,
input messages, and output messages. The clauses defining an automaton

"* initialize variables

"* define local actions of the automaton by

- stating preconditions for an action

- defining its effects on state variables

- defining any output messages the action generates

"* state frame conditions stipulating which actions may change a given
state variable or send messages on a given link

In general, a precondition is a predicate P (state, v). (Its parameters always
have the name state and v.) It is satisfied if, giving state the value of
the current state, there is some value of v such that P(state,v) is true.
An action is eligible iff its precondition is true; and executing an eligible
action means nondeterministically assigning some satisfying value to v, which
becomes the value of the action, and then performing a change of state and/or
sending messages. The change of state and the messages to be sent may be
defined parametrically in terms of the action's value. 2

The message-automaton shown in figure 1 was extracted from the proof of
the trivial two-phase handshake protocol that will be described in section 2.4.
The meaning of the mnemonically-named constructs ought to be reasonably
clear.

21n future versions of the semantics we plan to make a subtle change in these

semantics-from making a nondeterministic choice to making a random choice.

7

action a; precondition ready = true

effect ready := false

sends [< out, x >]

only {a, rcv(in)} affects ready

only a sends out

Figure 1: A simple message automaton

2.3 Base-case rules

Message automata contain only six kinds of clauses, and each gives rise to one
base-case (or primitive) logical rule. Here are instances of two of them. We
abbreviate "message automaton M realizes the formula 0" by the expression

Initialization clause

@i state x : T; initially x =v ý= Ve@i. first(e) =t x when e = v

An automaton that initializes the local variable x of location i to value v
realizes the following proposition: if e is the first event at i, then the value of
(x when e) is v. The phrase "Ve@i. " means "for every event e at location

Effects clause

@i state x : T1;
action k : T2;
k(v) effect x := f(s, v)
Ve~i. kind(e) = k =* x after e = f(state when e, val(e))

Every effect clause has two implicit bound variables: v, denoting the value
of the action; and state, denoting the current state. The effects clause above
says that one effect of action k is to update x, as a function of the value of
k. This clause realizes the proposition that after any event e of kind k, x has
the specified value.

8

2.4 Example: two-phase handshake

We use a very simple example to illustrate how a specification is expressed
naturally as a proposition on event structures and how it is refined entirely
in the logical domain to a collection of simpler specifications that can be
directly realized using the primitive rules. The specification is parameterized
by a pair of links in and out such that the destination of in is the source of
out. The informal specification is:

Between any two sends on link out there is a receive on link in.

We define two convenient predicates:

"* R(e) means that event e is a receive event on link in.

"* S(e) means that event e is a send event on link out. (More formally:
there is a receive event e' on link out such that e is its associated
sender.)

Formalizing these definitions is straightforward but would require us to in-
troduce otherwise unnecessary technical detail about event structures.

In these terms, our specification can be formalized as

Ve,,e2. (el < e2 A S(ei) A S(e2)) =•- 3e'. el < e' < e2 A R(e') (1)

This formula does not mention any local action or local state variable. Those
are implementation details, not specification concepts.

The first reduction step introduces an implementation decision: a single
local action a will do all the sending. To express this we first define a predicate
snd:

* snd(e) means that e is an event whose kind is local(a)

A system in which action a does all the sending satisfies proposition (2):

Ve. S(e) ý* snd(e) (2)

To realize proposition (2) it suffices to realize

Ve.snd(e) =' S(e) (3)

Ve.S(e) =. snd(e) (4)

9

But we can show that

local(a) sends [x] on out = (3)

only local(a) sends on out k (4)

The proofs are similar. One can formally prove (3) by appealing to the
base-case rule saying that the clause "local(a) sends [xJ on out" realizes
the proposition

Vegsrc(out). kind(e) = local(a) =.

3e'.kind(e') = rcv(out) A sender(e') = e A val(e') = x (5)

and then showing that (5) logically implies (3). A user following recom-
mended practice simply shows that (5) implies (3) and does nothing further
with (5), letting it remain as a leaf of the proof tree. We provide a tactic,
CreateRealizer, whose effects include recognizing (5) as the conclusion of
a base-case rule, creating the corresponding clause, and adding that clause
to the definition of the realizer that the proof will ultimately create.

Given (2), the specification (1) becomes equivalent to

Vel,e 2. =* (el < e2 A snd(el) A snd(e2))

3e'. el < e' < e2 A R(e') (6)

The next reduction step introduces another implementation decision: a
local state variable, ready, will control the sending. It must be true when
a send occurs, and be set to false by performing the send. That decision is
expressed by the proposition

Ve. snd(e) =• (ready when e) A -,(ready after e) (7)

We can realize (7) by a message automaton defined as follows:

precondition on a: ready = true

effect local(a) : ready := false

A fully formalized argument would reduce (7) to base-case rules and ordinary
logic, as was done for proposition (2).

So, given (2) and (7), the specification becomes equivalent to

Vel, e2. el < e2 A -,(ready after el) A ready when e2 =•

3e'. eI < e' < e 2 A R(e') (8)

10

Finally, we insist that ready is changed only by send or receive events,
that is:

Ve. ready A e => snd(e) V R(e) (9)

The expression ready A e formalizes the notion that "event e changes ready."
Proposition (9) is realized by the following message automaton:

only [local(a),rcv(in)] affect = ready

We have now derived an implementation, because the propositions (2),
(7), and (9) together imply (1), and because the realizers we have used for
those propositions are compatible. Equivalently, we may show that propo-
sition (9) implies proposition (8). This implication follows from a general
lemma saying that if the value of a variable changes between events el and
e2, then some event that changes it must occur in between el and e2. This
lemma holds for all event structures, and can be formally proven by induction
over the well-founded causal order.

Gathering these clauses together gives the automaton shown in figure 1.
Suppose we subsequently choose to strengthen the specification (1) by

adding a liveness condition: "after every receive on in there will be a send on
out." The strengthened specification follows from (2), (7), and (9) together
with the additional property:

Ve. kind(e) = rcv(in) :=# ready after e

So all we need do is derive a realizer for this proposition that is compatible
with the one already derived.

2.5 Event Structure Patterns

As illustrated in the simple sender/receiver example, users of our method
refine specifications by logical implication until they are realizable by message
automata. It would be onerous to require the user to reduce propositions all
the way down to base-case formulas.

Each base-case proposition corresponds to a simple, low-level program-
ming construct, a clause in the definition of a message automaton. One way
to ease the user's task is to introduce rules for higher-level programming
constructs. An analogy with the logic of sequential programming languages

11

may be helpful: In a rule of the form "M 1 €",the proposition € should,
intuitively, correspond to the strongest postcondition of M.

To illustrate this idea we have defined a notation for describing event
structure patterns (ESP), inspired by the Event Correlation Language de-
fined at Stanford. Similar languages form parts of other distributed program
specification languages. We may think of ESP expressions as simple pro-
gramming patterns.

To illustrate the use of ESP, suppose that at some point in the derivation
of a program, we find that we must realize the proposition:

Every event of kind A will send a message on link 1,

provided no events of kind B have previously occurred. (10)

Implicitly, we are referring only to events at a single location. All ESP
expressions will define specifications that are local, in this sense.

In general, ESP expressions will allow us to say that event e sends a
certain kind of message (or updates a state variable) if and only if the events
up to and including e match some pattern. Propositions such as this are
basic building blocks of many distributed algorithms; and, if the pattern is
suitably simple, they are clearly realizable-by a finite state machine that
on every event checks whether it "completes the pattern" and, if so, takes an
appropriate actions.

Syntactically, an ESP expression E is formed by combining "basic" ESP
expressions with operators reminiscent of, but richer than, regular expres-
sion operators. The meaning of a regular expression is the set of strings
that match it (the language it accepts). Similarly, we will say that an ESP
expression accepts the interval [el, e2J when the list of events between el and
e2 (and their values and local states) match the pattern defined by the ESP
expression. Each ESP expression is assigned to some location i and accepts
only intervals of events occurring at that location. Since we.are usually in-
terested in the case in which el is the first event at that location, we will say
that an ESP expression accepts event e if it accepts the interval [first(i), e]
where first(i) is the first event at location i = loc(e).

Accordingly, we may introduce infinitely many new base-case proof rules

E =OE

where E is an ESP expression and OE, a logical formula defined by recursion
on the construction of E, expresses its declarative meaning. We also define

12

a message automaton ME that realizes OE. Strictly speaking, E ý= OE is a
shorthand for ME 1= OE. To repeat the analogy with sequential program-
ming, OE is something like the strongest postcondition of ME.

In logical terms, these new rules can be thought of as derived rules of
inference. They do not increase the formal power of the logic, but simply
permit the direct application of frequently occurring proof patterns. For the
user, this effects a great simplification: The construction of ME and the
proof that ME realizes OE is, naturally, an elaborate induction. But it is
done once and for all, and built into the logic. So the user does not have to
do it-in particular, does not have to construct trivial but tedious induction
invariants, etc.

We now give a brief description of ESP. A basic ESP expression is a pair
(k, test) where k is an event kind and test is a predicate expressed in terms of
the event's value and the local state when the event occurs. So, for example,
if uid is a local variable, then each of the following is a basic ESP expression:

R, = (rcv(vote), val > uid)

S= (rcv(vote),true)

The basic expression (k, test) accepts e if e is the first event of kind k
whose state and value satisfy test. Thus, R1 accepts the first vote message
received in state in which val > uid; and R2 accepts the first vote message
received.

If E and F are ESP expressions, then so are

"* (ElF), which accepts the first event accepted by either E or F.

"• (E&F), which accepts the first e for which both E and F have accepted
some e' < e.

"* (E; F), which accepts e if for some e', E accepts pred(e') and F accepts
[e', el.

The explanation of ";" makes it clear that the explanations just given for "J"
and "&" have slightly cheated: for we must define what it means to accept
an interval of events, and not merely what it means to accept a single event.
A proper account is straightforward, but contains distracting details.

To see why ESP must be more general than regular expressions consider
the negation operator. Regular expressions are defined with respect to a

13

fixed alphabet like {a, b, c, d}; and therefore an expression like -,a is simply
a shorthand for (blcld).

But we wish to use ESP expressions without knowing the relevant "alpha-
bet" in advance. Another way to say that is that, if E is an ESP expression,
we want to be able to compose ME with any other compatible automaton,
which may have an arbitrary set of actions. Since we can't take the pattern
for "an A event preceded by any non-B events" to be the regular expression
(-,B)*A, we need another kind of control mechanism.

Instead of a negation operator we introduce exceptions (denoted by natu-
ral numbers) and generalize the notion of accepts to the notion "E accepts,,
lei, e2 1"-where the subscript stands for the exception status. The status
n = 0 is normal and all n > 0 are exceptional. We add throw (T), catch (C),
and loop (*) operators. If E is an ESP expressions, then so are

"* T,(E), which accepts, e when E accepts0 e or E accepts,, e.

"* C,(E), which accepts0 e when E accepts0 e or E accepts,, e.

"* [EJ*, which accepts,, [ei, e2] only when n > 0 and for some a0,..., ak,
a0 = el and E accepts0 [ai,pred(ai+1)] and E acceptsn [ak, e2j.

The final ingredient of ESP is a way to mark an expression with an
action-either to send a message or to update a state variable. The syntax
is:

* E.send,(s, v.t), where t is a function of the state s and event value v.

Whenever E accepts e, e sends t(state when e, val(e)) on link 1.

* E.x := s, v.t, where t is a function of the state s and event value v.

Whenever E accepts e, x after e = t(state when e, val(e).

An action mark does not affect which events are accepted by the expression,
but instead defines an action assertion: every event that is accepted nor-
mally by the subexpression up to the action mark will perform the indicated
action and these actions are preformed only by events that the subexpression
accepts normally. (We will illustrate this more precisely in section 2.6.) The
proposition OE is the conjunction of all the action assertions defined by E.
As already noted, we have shown that every ESP expression is realizable-by
giving a constructive proof that essentially compiles an ESP expression to a
message automaton.

14

A final note on the limitations of ESP: ESP expressions define purely
reactive programs. They don't initiate events, but only react to them. So
the message automata constructed from them contain only init, effect, sends,
and frame clauses and do not include any precondition clauses.

2.6 ESP Example

To restate the point of ESP: to allow the developer to use a simple program
pattern as a realizer of some relatively low-level proposition. Under the hood,
our tools derive a logical proposition that is declarative specification for that
program pattern to apply in the reasoning steps and a message automaton
that realizes that proposition.

Loop{ if an A event occurs then send x on link 1;
if a B event occurs then exit the loop;}

This description is slightly ambiguous, because it is not clear whether
events of any other kind can send on link 1. We resolve the ambiguity by
saying that they cannot.

The informal operational description translates straightforwardly to an
ESP expression. If A is an event kind, we use A as a shorthand for the basic
ESP expression (A, true), which accepts the first event of kind A that it sees.
Using that shorthand, we can represent our operational description with the
ESP expression

E - [A.sendj(x)jT1 (B)]* (11)

The loop performs a send action on every A event and exits, by throwing
exception 1, on any B event.

Intuitively, we might state the declarative meaning of E, its strongest
postcondition, as "an event sends on link 1 iff it has kind A and there have
been no prior events of kind B; and the message it sends on 1 is x." Call
this proposition 0'. The generated specification, OE, should be equivalent to
0' but may not be as intuitive one or as easy to apply in a proof. We now
sketch, by example, two things: how we generate OE and how OE can be
automatically simplified.

15

Generating OE

A accepts0 [x, y] translates to

01 -- "y is the first event in Ix, y] of kind A"

(A IT1 (B)) accepts0 [x, yj translates to

¢2 =- €1 A "no event in [x, y] other than y is of kind B

Now consider iteration. If Q(x, y) is a predicate defining any relation
between events, we may define a predicate Q+, on event intervals, as follows:

Q+[ei,e 2] €.: ao,...,ak.Vi < k.Q(ai,pred(ai+l)) A ao = el A Q(ak,e2)

In other words, Q+ is true over an interval if the interval can be decomposed
into one or more subintervals over which Q holds.

Then the action assertion for [A.sendj(x)ITi(B)]* is that e sends on 1 if
and only if

[AjT1(B)]*; (AITI(B)) accepts0 e

which translates to

The full definition of the translation, though straightforward, is complex.

Simplifying OE and finding invariants

The point of ESP will be lost if OE is difficult for the user to understand
or awkward to apply in a proof. The output of the translation is highly
stylized, and a number of useful simplifications can be stated as rewrite
rules, for example, if P(x, y) is the predicate Ve E [x, y]. €, then

P+[e1,e2] 4 Ve c [e1,e 2]. ¢5

That is: an invariant may be established over an interval by decomposing the
interval into subintervals all of which satisfy the invariant. More powerful
induction principles can also be stated as rewrites.

Automatically applied rewrite rules should be able to simplify the OE

generated for example 11 to something very close to 0'. One of our research
tasks in Phase II will be to define a set of rewrites and proof tactics adequate
to this purpose in typical cases. We claim that our method will not need
automated invariant discovery tools since most invariants these tools find
are implicit in the constructive proof of the realizers for ESP expressions or
follow from the general rewrite rules about their meanings.

16

3 Generating code from message automata

Section 2 has indicated how our methods proceed, in the non-real-time case,
from a specification to a message automaton that provably implements the
specification.' It also notes some of the Phase II research tasks necessary to
realize that body of work in a practical tool.

This section presents a high-level description of the prototype code gen-
erator developed in Phase I. Input to code generation is a table that assigns
to each location either an IP address or an indication that the location is
"external." The locations that are not external are "internal."

Our code defines the behavior at internal locations. An external location,
by contrast, might represent a device. The correctness proof for the code we
generate might therefore rely on explicit hypotheses about the behavior of
external nodes. As will be seen, the prototype code generator creates dummy
implementations for the external nodes, so that messages from an external
location can be simulated by entering them through a gui, and messages sent
to an external location are simply marshaled and displayed on a terminal.

The output of the code generator is a set of Java programs, one associated
with each location, that collectively implement the specification. This section
gives an overview of the generated code (section 3.1) and of how it's generated
(section 3.2). It also briefly mentions some foundational questions that are
outside the scope of this work (section 3.3).

The Phase I prototype applies to a static situation, in which all locations
and their links are known in advance. That is because the formal model uses
a standard mathematical trick to represent dynamic situations as static: All
possible nodes and all possible links between them exist already. Dynamic
behavior, such as the creation of a node, can be mathematically simulated by
introducing some "activation" event that starts the preexisting node running.
Generating code that doesn't, for example, merely simulate the dynamic
creation of a link but actually creates one will require us to make those
idioms for mathematical simulation completely systematic, so that the code
generator can recognize them. That is a subject for Phase II.

3 Section 4.4 applies the logic of message automata to derive (and automatically generate
code for) a symmetric leader election protocol.

17

3.1 Design of the generated code

The generated code is very straightforward. The main elements of our ab-
stract model are locations (which can be thought of as computational nodes)
and links (one-way FIFO communication channels between locations). We
generate one Java package for each location and one for each link.

The package for a link defines the types that can be sent across the link,
interfaces Sender and Receiver for using the link, and a correlated pair of
classes that provide default implementations of this interfaces sending. For
a link implemented as a socket connection, these correlated classes agree on
the IP address and port number to which messages are being sent.

The package for each location defines a class Node that encapsulates the
behavior of the automaton at that location, and a class Main with a main
program that creates the node and sets it running. Creating the node means,
essentially, supplying it with Sender and Receiver objects for the links to
which it is attached.

This simple organization localizes the changes that have to be made in
order to use a different implementation of a link, or replace our dummy
version of an external node with a simulation of it, or with the real thing.

The prototype makes, by default, a number of implementation decisions
that do not affect the correctness of the implementation but may affect its
performance. A real-world tool must allow developers to make those decisions
in order to tune their systems. In a fully developed tool, these decisions would
be supplied to the code generator as additional parameters.

We describe the default implementation, and list some of the important
parameters that a Phase II implementation would provide.

3.1.1 Links

A link, providing one-directional communication, is implemented by a send
object and a receive object. The Java code for a link defines a Receiver
interface, a Sender interface, and default implementations of them.

Our default implementation of a link between internal nodes is a socket
connection. The receiver creates a server socket and a new thread that listens
on the socket and inserts every message that arrives into an internal buffer.
The receiver exports methods for inspecting the buffer and for extracting its
elements. The socket in the sender knows the IP address and port on which
the receiver listens and exports methods for serializing and sending messages

18

across the socket.
Here are some of the implementation decisions about links that a user

should be able to control:

Initialization Even if we are implementing a system that takes failure into
account, our formal model assumes an initial state consisting of some set of
functioning nodes and links. The first thing the generated code does is to
set up all those links, assuming that the nodes they connect are initially
available. If any node is unavailable, our setup procedure will fail. A user
may want to use a different initialization protocol, or to define a recovery
mechanism for this initialization procedure.

Security and integrity In our default implementation, the receiver lis-
tens on a predetermined port. Our semantic model assumes that only the
appropriate sender object sends to that port. A user will want to control
how that assumption is enforced, which will require a realistic evaluation of
threats: Are we worried about misconfiguration or malice? An insider or an
outsider? Does it suffice to verify the identity of the machine that sends a
message (which can be done by IPSEC) or must one identify the process that
sends it? Etc.

Flow control Our formal model requires that the messages on any one
link are transmitted reliably, and in order. The prototype accomplishes this
by "pushing" messages from the sender and buffering them at the receiver.
A developer may prefer a different model-for example, communication by
"pull": messages are buffered at the sender and transmitted only when the
receiver signals its readiness.

Optimizations Many simple optimizations are possible. For example,
if two locations reside on the same host, they may communicate directly
through a shared buffer, without setting up a socket.

3.1.2 Nodes

Each node has a repertoire of actions, and each action guarded by some
trigger or condition (the receipt of a message and/or a predicate on its local

19

state). The behavior of a node is, repeatedly, to choose some eligible action
and perform it, thereby updating its state and/or sending messages.

Here are some of the implementation decisions about nodes that a user
should be able to control:

Scheduling Our formal semantics requires that actions be chosen fairly:
that is, an action cannot become permanently eligible and yet be permanently
ignored. Our default implementation of fairness is round-robin. In order to
tune the performance of the system, or to create a system that adapts its
behavior to conditions, a user may employ any scheduling discipline (any
scheme of priorities, timeouts, etc.) that selects actions fairly.

External nodes In our formalism, all actors are message automata resid-
ing at particular locations. When those actors are software, we generate the
code. But some actors will be, for example, I/O devices. We cannot generate
the code guaranteeing that an input or output node behaves correctly, but
must simply assume that it does so. (We may, of course, formally specify
and implement defensive behavior that achieves the desired result if an ex-
ternal node behaves correctly, and acts appropriately if not.) The prototype
provides a virtual model of external nodes.

A reasonable virtual model (of which the prototype implements a simpli-
fied version) would work as follows: Every external node is a gui. The gui
has a separate panel for each link end to which it is connected: for entering
input when it can send to a link, and displaying inputs when it can receive
from one.

To limit the amount of gui programming required, we restrict external
nodes as follows: each is connected to only one link end. Messages received
by an external node are written to the screen. If an external node can send
to a link, we create a gui for entering the messages and sending them.

3.2 Implementation of the code generator

3.2.1 Scope

In our formal model, the internal state variables of a message automaton
and the messages transmitted between them may have any type definable
in NuPrl. The prototype limits messages to the "basic" types of integer,
boolean, and string; and it limits state variables to types constructed from

20

basic types by the product and union operations (in C terms, to structs
composed from basic types). The Phase I prototype covers any automata
generated from an ESP expression.

3.2.2 Code generation

Intuitively, a constructive proof of a proposition defines a realizer for the
proposition. For example, a realizer of the proposition that every pair of
integers has a greatest common divisor is a (demonstrably correct) algorithm
for a function that computes it.

Our logic for distributed systems is defined so that the realizer of a
property-e.g., mutual exclusion-is a message automaton that implements
the property. In this logic, a proof consists of three parts:

* a message automaton (constructed automatically by the NuPrl envi-
ronment),

* a proof that the automaton is feasible (roughly speaking, implementable),
and

* a proof that all executions of the automaton satisfy some given set of
requirements.

Thus the proof contains both a recipe for how to behave (the automaton
and elements of the feasibility proof) and a demonstration that the behavior
implements some desired goal.

The realizer is a NuPrl term. The code generator walks through the
term until it reaches primitives, whose translation it looks up in a table and
inserts appropriately into the target text. This makes it easy to extend the
code generator by adding new "primitive" symbols to the lookup table.

Code generation uses the feasibility proof as follows: To implement the
logic that decides when an action is eligible we need an algorithm for evaluat-
ing its precondition. The feasibility proof requires us to show, constructively,
that all such preconditions are decidable, and from that we automatically ex-
tract algorithms to carry out all the decisions.

3.3 Foundations

We note a foundational question that is outside the scope of this project.
Underlying NuPrl is a version of lambda calculus, and each NuPrl term has

21

an executable meaning defined by applying reduction rules. Therefore, every
NuPrl terms is a program. In the "classic" proofs as programs method, the
realizer of a proof is therefore a program that implements the proposition
proved.

In our logic for distributed systems a realizer is a message automaton,
which is a NuPrl term, but execution of that NuPrl term does not implement
the propositions that the message automaton realizes. (That's why we need
a separate code generation step.) The reason is that a message automaton is
really a predicate that defines a set of execution histories. The corresponding
NuPrl term is therefore a program that implements that predicate: a higher-
order program that recognizes whether a given execution history satisfies
the constraints. It is not a distributed program that actually implements
appropriate execution histories.

4 A logic for hybrid systems

In Phase I we have defined a semantics and a logic for hybrid message au-
tomata, which incorporate real time and variables that may vary continuously
in real time. We do so by adapting modeling principles that have been suc-
cessfully used in other formalisms for hybrid systems: In these models the
history of a hybrid system may contain discrete transitions, taking zero time,
that update the values of discrete variables and-speaking in the jargon of
control theory-selects the control laws constraining the evolution of con-
tinuous variables. In the intervals between discrete transitions, continuous
variables evolve according to constraints of the current control laws.

4.1 Hybrid event structures

Formally, we may choose to model time by any subgroup Time of (Real, ±).

Choosing the "right" time domain will require more experience. We currently
use the domain of rational numbers, because we want a model of time that
is dense-between any two instants of time there are infinitely many other
instants-and because the rationals are easier to model in NuPrl than the
real numbers. (Note that any time value occurring in a program, such as the
value returned by a call to a clock, will be a rational number.)

We assume a conceptual global clock.4 In physical terms, this means that

4There is no problem in modeling the possibility that local clocks consulted at particular

22

relativistic effects can be ignored. We add to language of an event structure
a function time so that timee is the value of the global clock at event e; and
define d to be the corresponding metric

d(a, b) = Itime(b) - time(a)j.

All variables now represent trajectories. The denotation of a variable x
of type T is a function [0, +oo) -4 T. To say that f is the denotation of x
"now" is to say that f(t) will be the value of x after time t has elapsed (from
"now") if no event occurs to change it: the value of a variable at location i
can be changed only by an event at location i.

An event may cause a discontinuity, and may also change the "rule" by
which a variable evolves. To express these principles we merely generalize
the when-after axiom (axiom 4, of section 2.1): For all t > 0,

-ifirst(e) =* (x when e)(t) = (x after pred(e))(t + d(pred(e), e))

A discrete variable is one whose denotation is required to be a constant
function. For discrete variables, this axiom is equivalent to the previous one.

This small repertoire of basic operations allows us to introduce arbitrarily
complex defined operators-for example, an operator that stitches together
the sequence of denotations of a trajectory variable x into a single function
-', : [0, +oo) -- T representing its entire history, parameterized by the global
clock. At any time t, r,(t) is the value of variable x.

Suppose, for example, that all the following hold:

el and e2 are successive events at location i
d(el, e2) = 2
(x after el) = (x when e2) = At. t
(x after e2) = At. 3

These successive denotations for x are indicated graphically in figure 2.
The dotted part of the first trajectory for x indicates that part of the pre-
dicted future for x that was altered by the occurrence of event e2. Figure 3
shows a trajectory for x obtained by stitching these two denotations together.
Figure 3 cheats slightly, because it doesn't make clear what the value of x
should be at the instant e2 occurs. We have the means available to make

locations may drift at some specified rate from the global clock.

23

el e2

Figure 2: Successive denotations of x

the choice in whatever way is most convenient-for example, to make the
trajectory left continuous or right continuous, or even to say that the "real"
position of x at that time is some nondeterministic value between 2 and 3.
In any case, choosing to summarize this information in a single "trajectory"
artifact, whose definition involves an arbitrary choice, doesn't cause any in-
formation to be lost.

Finally, as is customary in modeling hybrid systems, we introduce an
axiom that rules out "Zeno" behaviors in which infinitely many events occur
within a finite span of time: for any location i and any time t > 0, there is
a latest event at i whose local time is not greater than t.

4.2 Hybrid message automata

The clauses and basic proof rules for hybrid message automata, which gen-
eralize the clauses and proof rules for message automata to apply to the
case of continuous variables, are described in section 4.2.1. A hybrid mes-
sage automaton in which all variables are discrete is equivalent to an ordinary
message automaton. Section 4.5 applies the logic of hybrid message automata
to a distributed generalization of Fischer's protocol, a mutual exclusion al-
gorithm that relies on timing assumptions.

These hybrid message automata cannot realize a timeliness requirement

24

el e2

Figure 3: A trajectory for x

such as "perform task A every 100 milliseconds." That is as it should be, since
one can't say anything about such a requirement in the abstract, without
knowing what resources are available. We factor out timeliness requirements
by using them as explicit hypotheses. Thus, our methods provide the logi-
cal glue between high-level requirements and low-level timing requirements
that can be addressed with standard scheduling techniques. This strategy is
described in section 4.2.3. Carrying it out is a subject for Phase II research.

4.2.1 Clauses and logical rules

Every variable will be declared as being either discrete or continuous. Up-
dating a variable assigns a trajectory to it (i.e., a function of time), and we
require that a discrete variable must be assigned a constant trajectory. That
requirement modifies the clauses and rules for initialization and effects, and
modifies the definition of compatibility between clauses.

The requirement that actions be chosen "fairly" must be slightly modified.
The intuitive idea of fairness is that an action cannot become permanently
enabled but permanently ignored (not taken). In an ordinary message au-
tomaton, a variable can change its value only as the result of some event; and
therefore the eligibility of an action does not change between events. The
technical definition of fairness for ordinary message automata relied on the
fact that "nothing changes while we're not looking."

But a continuous variable, such as a clock, may change its value in be-
tween observations, and therefore the eligibility of an action may change

25

between observations. So the technical statement of the fairness requirement
must be rephrased so that "becomes permanently true" means "is true now
and at all times in the future" rather than "is true now and true in every
observed future state."

We have implemented the logic of hybrid message automata in NuPrI and
exercised it in two ways.

First, we performed a sanity check: Every theorem about ordinary mes-
sage automata should be true of hybrid message automata under the assump-
tion that all variables are discrete. Accordingly, we redeveloped the entire
theory of ordinary message automata, and its library of some 2,400 lemmas,
in this new setting. The labor was considerable, because it involved changes
to notions at the heart of the theory-such as the denotation of a variable
and the axiom relating when and after. The NuPrl tactic mechanism, which
allowed us to replay old proofs and to upgrade the auxiliary tactics they used,
was essential to making this manageable.

Second, we applied it to the generalized Fischer protocol defined in sec-
tion 4.5. This example includes reasoning about "delay" statements and
network latency but includes no timeliness requirements.

4.2.2 Code generation for hybrid message automata

Code generation for hybrid automata is work for Phase II. Here we note
one essential point. The meaning of a discrete variable is clear, since it
corresponds to a program variable. But what is the computational meaning
of a continuous variable? We distinguish between those continuous variables
that are used as specification artifacts-e.g., to represent the trajectories of
physical objects in some phase space-and those with direct computational
meaning. At least one kind of continuous variable will have such a meaning:
a clock or a timer.

Clocks (counting up) and timers (counting down) can be set and read.
Starting clock clk with initial value v corresponds to the assignment

clk := At. t+v

That is, clk is "now" v and in future it increases in perfect synchrony with the
conceptual global clock. Setting timer tmr to count down from d corresponds
to assignment

trm := At. d-t

26

Each kind of continuous variable with direct computational meaning will
have to be supported by its own idioms for code generation. (See also the
discussion of virtual variables in section 4.2.3.)

4.2.3 Timeliness

As noted, we may use the logic of hybrid message automata to reduce a high-
level property to an implementation that is correct under the assumption
that its components satisfy some low-level timeliness hypotheses. From a
logical point of view, these hypotheses can be arbitrary. However, rather than
reproduce the whole of scheduling theory within NuPrl, it seems reasonable to
apply standard scheduling tools to verify these low-level requirements, which
means that the hypotheses must be translatable into the kinds of scheduling
problems that the tools can handle.

Thus we need some stylized way to represent the hypotheses. The precise
way to do that is a matter for Phase II, but as a simple first draft, consider
a "deadline" clause written

deadline (P -> clk <= f)

where P is boolean, clk is a clock, and f is an expression of type Time.
Thus, a deadline clause would state the hypothesis that the boolean ex-

pression

P -> clk <= exp

is true at all times. The antecedent P is just a way specifying when we're
actually interested in having the clock bound hold.

So, to require that some action a occur at least once every 100 seconds
we could add clauses that do the following:

"* introduce a clock variable clk that is affected only by action a;

"* initialize clk to 0;

"• include "clk : = \lambda t. t" among the effects of a;

This resets clk to 0 on completion of a.

"* and add the hypothesis deadline (true -> clk <= 100)

27

By adding a few more clauses, we could require a to be strictly periodic with
a period of 100. For common requirements such as strict periodicity we could
introduce a convenient notation that adds all these clauses at once.

Since clk is introduced purely for sake of stating a hypothesis, code gen-
erated for action a should not implement any of these new clauses. Thus,
we should introduce a class of virtual variables that can be used for spec-
ification purposes only. Simple static semantic restrictions would suffice to
ensure that the virtual variables would have no effect on the visible behavior
of the automaton.

4.3 Methodology

We provide special support for a certain style of program derivation, which
is encapsulated in a collection of definitions and proof tactics. As already
noted, a specification is determined by a property of event structures-which,
formally, is a NuPrl term € with the type

Aes. O(es) : EventStructure -- Proposition

That is, if the variable es is an event structure, ¢(es) is a proposition. The
NuPrl term denoting the specification that € defines is written

I-es ,(es)

where the "es" is a bound variable. The English language meaning of this
specification is

There exists a realizer R that is feasible, and such that every event
structure es consistent with R satisfies the proposition O(es).

This specification is the top-level goal to be proven in NuPrI
More generally, specifications may be parameterized in an arbitrarily com-

plex way. For example, section 4.4 derives a leader election protocol in a ring
of size n, for any natural number n. Thus, the form of that specification is
actually

Vn: Nat k,, O(es, n)

To generate an implementation for a ring of size 7, we derive (in one trivial
step) the specification

F- ¢(es, 7)

and apply the code generator to that.
A user begins by invoking the tactic

28

Realizer 'foo'

on the top-level goal, where foo may be any string, chosen by the user, to
name the realizer that will be constructed. This tactic reduces the user's
task to proving three subgoals, which can be informally stated as follows:

1. foo is a realizer

2. foo is feasible

3. assuming (1), (2), and that es is consistent with foo, prove the propo-
sition O(es)

The user ignores subgoals (1) and (2), because those will be addressed auto-
matically. The user's task is to to figure out what foo should be, by applying
NuPrl reasoning to decompose (3) top-down, until all its leaves are instances
of base-case formulas (as described in section 2.3).

Having reached this point, the user clicks on the CreateRealizer button,
which checks the user's work and, if the user hasn't erred, completes the proof
automatically. In slightly, more detail:

"* It checks that the leaves of the proof tree really are instances of base-
case formulas.

"* From these base-case formulas, it creates a definition for the realizer
foo.

" Using that definition of foo, it completes the proofs of (1), (2), and (3)
automatically.

If the leaves of the proof truly are base-case formulas, the proofs of (1)
and (3) are guaranteed to succeed. The proof of (2) is essentially a check
for static semantic errors, such as defining an action that contradicts a
frame clause. 5

Given any theorem of the form F-es 4(es), however it has been proven,
clicking on the GenerateJava button will generate a Java implementation
(provided that the NuPrl types of the state variables and messages are re-
stricted to those that we know how to translate into Java).

5 Strictly speaking, the feasibility condition is not decidable because NuPrl type check-
ing and subtype checking is not decidable. However, by slightly strengthening the feasi-
bility condition we could make it decidable without ruling out any programs likely to be
practically interesting.

29

4.4 Example: Leader election in a ring

"Leader election" is a simple example of mutual exclusion: some set A of
agents is to run a protocol that chooses exactly one of them. It's customary
to call the chosen agent the "leader."

To make this formal, we declare an event kind leader and define "the
agent at location a is chosen as the leader" to mean that an event of kind
leader occurs at location a. Given a finite set A of locations, there must be
exactly one a E A for which an event of kind leader occurs at a. Note that
this specification contains both a liveness requirement (there must exists an
event of kind leader at some location a in the set A) and a safety requirement
(events of kind leader may not occur at two different locations in A).

In the formal language, locations are members of the type Id. It is conve-
nient to model a finite set of locations by a list containing no repeats. Then
the formal specification is

VL: Id List no-repeats(L)
he 3ldr E L (3e@,eldr.kindes(e) = leader)

A
(Vi E L.Ve@,si. kindes(e) = leader =• i = ldr)

This specification is parameterized by a list of agents (so, in particular, the
result we prove will apply to any number of agents). The way in which we
parameterize results is not restricted by the template mechanisms of any
programming language. All the types and resources of NuPrl are available. 6

Different formal proofs of this logical statement will lead to different re-
alizers (i.e., different protocols) and different Java code. Our formal proof
showed that the list L could be made into a ring by adding suitable links,
and thus the members of L could be assigned unique numbers (because L has
no repeats). Every agent in L sends the following messages to its successor
in the ring:

"* a "vote" containing its own number;

"* any "vote" message it receives containing a number that is greater than
its own

6When the parameterization of the formal theorem is very simple, it may be desirable
to generate code that uses templates in the target language. That will be investigated in
Phase II.

30

Exactly one agent (the one with the biggest number) will receive a vote
containing its own number. An agent who receives its own number in a vote
message will perform an event of kind leader.

The proposition we prove has the form

V L ... kO q(L, es)

We generate code from statements of the form

fe q(es)

To generate code, we instantiate the parameter L by a list of the agents. The
code generated for a list ["a", "b", "c", "d" , "e"] is given in appendix B.

To demonstrate the code we must make events of kind leader visible, so
we add a requirement to the specification, stating that every event of kind
sends a message to the external node output.

4.5 Example: A generalization of Fischer's protocol

Fischer's Protocol has been used as a benchmark for comparing methods of
program analysis. We construct a somewhat artificial test by extending it to
the distributed case and use it to experiment with reasoning about real time
in hybrid event systems.

4.5.1 Fischer's Protocol

Fischer's Protocol is a mutual exclusion algorithm that relies on timing as-
sumptions. Its standard formulation relies on all processes sharing a variable-
which is called turn in the pseudo-code below.

Let the processes be numbered 1,. . . , N. Process i executes:

loop
wait for turn = 0;
L: turn :i;
delay b;
if turn = i then

enter critical section;
turn := 0;

endif;
end loop;

31

When turn is 0 the critical resource is available. In order to claim the
resource, a process writes its own id into turn, then waits for at least time
b and reads turn again. If turn still contains its id, the process enters its
critical section and, on concluding it, resets turn to 0. (We assume that both
reading turn and setting turn are atomic actions.)

Without timing assumptions this doesn't guarantee exclusion. Suppose
that the value of turn is 0 and the actions of process 1 and process 2 are
interleaved as follows:

process 1 reads turn
process 2 reads turn
process 1 executes turn := 1
process 1 rereads turn, finding value 1 1
process 1 enters its critical section
process 2 executes turn := 2
process 2 rereads turn, finding value 2
process 2 enters its critical section

Now, both processes are in their critical sections at the same time.
Mutual exclusion will be guaranteed if the execution time of "turn : =i"

is strictly less than the length of delay b. Notice that this protocol makes es-
sential use of the shared variable turn, something unavailable in a distributed
system.

4.5.2 A distributed version

We have formulated a distributed version of this protocol, which proves to
be somewhat tricky. We describe it informally. A node can be in one of five
states, whose intuitive meanings are given in figure 4.

free believe that the shared resource is free
taken know that the resource is taken by some other node
try attempting to acquire the resource
contend contending with others for the resource
mine possessing the resource

Figure 4: The states of a node

The transitions between states are shown in Figure 5.

32

mine

taken

Figure 5: Distributed Fischer's Protocol

Certain transitions are guarded by conditions (including timing require-
ments) and certain transitions result in the sending of broadcast messages.
We assume that

"* these broadcasts are delivered reliably, with a latency of at most d

"* no nodes fail

The preconditions and effects of those transitions in Figure 6.
This is not meant to be a practical protocol, since the underlying assump-

tions are very strong. The main goal was to provide a nontrivial example on
which to exercise the model of hybrid message automata.

4.5.3 Lessons learned

We carried out a derivation for this protocol far enough to show that our
formalism is rich enough to handle it:

* stated the specification formally;

33

free -- try

Requires: in state free for at least d
Broadcast: "trying"

free --* taken
Trigger: receive "taken"

taken -4 free
Trigger: receive "free" message

try -+ mine
Trigger: in state try for 2d, without receiving "trying"
Broadcast: "taken"

mine -• free
Broadcast: "free"

try -- contend
Trigger: receive "trying" within 2d of entering try
Chooses: set r to positive random number

contend -- taken
Trigger: receive "trying" between 2d and 2d + r after entering contend

contend -- try
Trigger: "trying" not received between 2d and 2d + r after entering contend

Figure 6: Preconditions and effects of transitions

34

" defined a system invariant and proved formally (in NuPrl) that it im-
plies the specification;

" defined a set of constraints and showed, by an informal pencil-and-
paper proof, that they are realizable and collectively imply the invari-
ant.

Parts of the pencil-and-paper proof were carried out fully formally,
which lead to significant improvements in our machinery for supporting
proofs (described below) and pointed out directions for future develop-
ment.

The formal work resulted in: improving MaAuto, our basic tactic for doing
routine reasoning about message automata; developing a tactic for deciding
rational constraints; introducing a logic for call-by-value; and suggesting the
high-level technique of "reasoning about knowledge" to simplify the proof.

The invariant The key invariant says that execution of the protocol can
be thought of as occurring in a series of "rounds," each of which contains
"slices." Every round begins with all nodes in state free and ends with
one node in state mine and all others in state taken. One possible run of
the protocol, with three nodes, is shown in figure 7. The arrows represent
messages. All the events on the same horizontal line constitute a slice. The
invariant states that any two events in the same slice occur less than 6 time
units apart and that, within a single round, the sequence of states occurring
at any one node must match the regular expression

free (try; contend)* (taken I mine)

Rational constraints The proofs required a great deal of reasoning by
cases, in which it was "obvious" that many of the cases would be impossible-
e.g., a case in which all the following inequalities would have to hold for the
timing of events e and e':

time(e) + J < time(e')

time(e') + 5 < time(e)

0<j

35

free free free

try try taken

I I
contend contend

try try

I I
contend contend

try taken

mine

Figure 7: One round of the protocol

36

We developed a provably correct tactic that, given any such set of constraints
(all with rational coefficients), would return either a particular solution, or
guarantee that none could exist.

Call-by-value The logic of NuPrl is defined, in part, by a computation
system: a collection of rules for reducing terms. Typically, these rules are
lazy-reductions will be delayed as long as possible, so that they won't
be performed unless they are required. Thus, for example, the expres-
sion "(\lambda x.true)y" will persist until it occurs in a context such as
"(if \lambda x.true)y then A else B"-at which point the function ap-
plication will reduce to true and the conditional will reduce to A.

In certain situations lazy evaluation turns out to be costly. So we intro-
duced a term

call-by-value(y, x.B[x])

that represents an "eager" evaluation of (\lambda x. B[x])y. It means
"evaluate y, and if it has a value, substitute that value for the x in B [x] ."

The tactic we have defined for reasoning about timing inequalities did
some bookkeeping in a 2-dimensional table that was represented as a list
of lists. The first version of the tactic did table lookups lazily, leading to
a proliferation of large terms that symbolically denoted the results of table
lookup. The result was very large, inefficiently handled, formulas. It proved
much more efficient to do lookups using call-by-value. A vivid example of
this effect can be seen by programming the Fibonacci function: an implemen-
tation that takes exponentially many steps if additions are evaluated lazily
becomes linear if additions are evaluated with call-by-value.

Reasoning about knowledge Prof. Joe Halpern, of Cornell University,
noted that the key invariant we formulated for the generalized Fischer proto-
col is an instance of "e-common knowledge," as defined in [20]. The relevance
of reasoning about knowledge is also suggested by the terminology used in
figure 4. Reasoning abstractly about knowledge, and then instantiating to
our particular case, could greatly simplify tedious details. A Cornell PhD
student is currently working on representing such reasoning within our event
system formalism.

37

5 Results and Discussion

The goal of our work is to provide automated support for the development of
correct distributed and/or real-time systems. Developers will work at a high
level of abstraction, specifying requirements in a declarative way and reason-
ing about them in a domain specific logic. Using the "proofs as programs"
paradigm, a developer shows, with powerful automated support, that some
high-level requirement can be implemented-and that demonstration itself
defines an abstract implementation, called a (hybrid) message automaton,
which we automatically extract and from which we generate the code for an
implementation.

5.1 Phase I

Building on previous work that extended the "proofs as programs" approach
from sequential to distributed systems, Phase I research achieved the follow-
ing results:

We implemented a prototype code generator to translate message au-
tomata into distributed Java programs and demonstrated it on a leader elec-
tion protocol. There was of course no doubt that we could extract mes-
sage automata from proofs and could generate programs from the automata.
Building the prototype accomplished two things: First, it created an in-
frastructure for extracting message automata from proofs and manipulating
them. In Phase II, this infrastructure can be generalized to handle hybrid
message automata (which model real-time behavior) and can be retargeted,
if desired, to generate code in languages other than Java. Second, we iden-
tified what parameterization will be required to build a practical code gen-
eration tool. For example, many implementation choices-such as whether
senders "push" messages or receivers "pull" them-concern performance, not
correctness. The prototype builds in a default choice, but a Phase II imple-
mentation of the code generator will allow the user to make those decisions
from a high-level menu of choices.

We extended the logic of distributed systems to incorporate real time and
time-varying variables, and extended message automata to a corresponding
notion of hybrid message automata. We demonstrated this logic by applying
it to distributed mutual exclusion (using a version of Fischer's protocol).
Using this example (and others) we have begun the work of developing proof
methods that scale, including automated tactics that will accomplish much of

38

the routine work of proving. A good library of tactics is essential to making
our methods practical.

5.2 Phase II

We summarize a number of technical tasks remaining for Phase II. All these
tasks have been described earlier in this report.

5.2.1 The formal model

The formal model uses a standard mathematical trick allowing it to model
dynamic behavior by an unbounded static model. All possible nodes and
all possible connections among them exist already, and by using appropri-
ate "create," "destroy," and "connect" actions we can simulate dynamic
behavior. A code generator cannot implement this procedure. We need to
incorporate into our logic a set of idioms that hides the static model and
refers directly to dynamic behavior, from which code generation can take its
cues.

5.2.2 Proof methods

Section 4.5.3 noted several ways in which we have made proving more effi-
cient (and therefore more scaleable). Such improvements typically respond to
problems discovered while doing examples. Phase I work has already allowed
us to identify additional goals:

"* Generalize ESP to real-time.

Previous work has defined and implemented the ESP notation (sec-
tion 2.5), which can be thought of as a way to define a realizer using
something like a regular expression.

"* Allow the introduction of new proof rules in which reasoning steps are
carried out by invoking decision procedures, or semi-decision proce-
dures, external to NuPrl; dependencies upon such rules must be care-
fully accounted for.

" Improve the efficiency of code generation by exploiting symmetries.
(For example, if all nodes of a network are essentially running the same
protocol, we want to avoid duplicating work by generating the code of
each node from scratch.)

39

The major addition required in Phase II will be support for reasoning
about timeliness. By themselves, hybrid message automata cannot guarantee
timeliness constraints, such as "task A is executed once every 100 millisec-
onds." We have proposed to partition the reasoning: using such timeliness
constraints as hypotheses, thereby reducing the high-level requirements to
this set of hypothesized constraints, and then applying standard scheduling
tools to satisfy those constraints.

In the abstract, these hypotheses can be arbitrary; but if we want to
translate them into standard scheduling problems we must express them in
some restricted and stylized form. We must design that notation and make
the connection to scheduling tools. Phase I work has proposed a first draft.

5.2.3 Code generation

We must extend code generation from message automata to hybrid message
automata. Where the formal model (and therefore the correctness guaran-
tees) allows a variety of implementation choices, we must give a developer
the ability to tell the code generator which choice to make. These choices
will involve communication protocols, scheduling, security, etc.

6 Bibliography

References

[1] Uri Abraham. On interprocess communication and the implementa-
tion of multi-writer atomic registers. Theoretical Computer Science,
149:257-298, 1995.

[2] Uri Abraham. Models for Concurrency, volume 11 of Algebra, Logic and
Applications Series. Gordon and Breach, 1999.

[3] Uri Abraham, Shlomi Dolev, Ted Herman, and Irit Koll. Self-stabilizing
£-exclusion. Theoretical Computer Science, 266:653-692, 2001.

[4] Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz,
and Lori Lorigo. The Nuprl open logical environment. In David
McAllester, editor, Proceedings of the 17th International Conference
on Automated Deduction, volume 1831 of Lecture Notes in Artificial
Intelligence, pages 170-176. Springer Verlag, 2000.

40

[51 Stuart Allen, Mark Bickford, Robert Constable, Rich Eaton, Christoph
Kreitz, Lori Lorigo, and Evan Moran. Innovations in computational
type theory using Nuprl. Journal of Applied Logic, special issue on
Mathematics Assistance Systems, expected 2005.

[6] Stuart Allen, Mark Bickford, Robert Constable, et al.
FDL: A prototype formal digital library, May 2002.
http://www.nuprl.org/html/FDLProject/02cucs-fdl.html.

[7] Myla Archer and Constance Heitmeyer. Mechanical verification of timed
automata: A case study. Technical report, Naval Research Labora-
tory, Washington, DC 20375, May 19, 1997. A shorter version of this
report was presented at RTAS '96, Boston, MA, June 10-13, 1996.

[8] Andrew Barber, Philippa Gardner, Masahito Hasegawa, and Gordon D.
Plotkin. From action calculi to linear logic. In Mogens Nielsen and
Wolfgang Thomas, editors, Computer Science Logic, 1 1 th Interna-
tional Workshop, Annual Conference of the EACSL, Aarhus, Den-
mark, August 23-29, 1997, Selected Papers, volume 1414 of Lecture
Notes in Computer Science, pages 78-97. Springer, 1998.

[9] Ricky W. Butler and George B. Finelli The Infeasibility of Quantifying
the Reliability of Life-Critical Real-Time Software. IEEE Transac-
tions on Software Engineering, 19(1), pages 3-12, January 1993.

[10] Levente Butty~n and Jean-Pierre Hubaux. Report on a working session
on security in wireless ad hoc networks, 2002.

[11] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[12] Michel Charpentier and K. Mani Chandy. Towards a compositional ap-
proach to the design and verification of distributed systems. In Jean-
nette Wing, Jim Woodcock, and J. Davies, editors, FM99: The
World Congress in Formal Methods in the Development of Com-
puting Systems, volume 1708 of Lecture Notes in Computer Science,
pages 570-589, 1999.

[13] Robert L. Constable, Stuart Allen, Mark Bickford, James Caldwell, Ja-
son Hickey, and Christoph Kreitz. Steps Toward a World Wide Digi-
tal Library of Formal Algorithmic Knowledge MURI Review, volume
1. 2003.

41

[14] Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization
skeletons from branching time temporal logic. In Proc. Workshop
on Logics of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52-71. Springer-Verlag, 1982.

[15] J. Douceur, A. Adya, J. Benaloh, W. Bolosky, and G. Yuval. A secure
directory service based on exclusive encryption. In 18th A CSA C, De-
cember 2002.

[16] E. Allen Emerson and Edmund M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons. Science of Com-
puter Programming, 2(3):241-266, 1982.

[17] Kai Engelhardt, Ron van der Meyden, and Yoram Moses. A program
refinement framework supporting reasoning about knowledge and
time. In Jerzy Tiuryn, editor, Proc. Foundations of Software Sci-
ence and Computation Structures (FOSSACS 2000), pages 114-129,
Berlin/New York, 1998. Springer-Verlag.

[18] Kai Engelhardt, Ron van der Meyden, and Yoram Moses. A refinement
theory that supports reasoning about knowledge and time for syn-
chronous agents. In Robert Nieuwenhuis and Andrei Voronkov, edi-
tors, 8th International Conference on Logic for Programming, Artifi-
cial Intelligence and Reasoning, volume 2250 of Lecture Notes in Ar-
tificial Intelligence, pages 125-141. Springer-Verlag, December 2001.

[19] http://www.nuprl.org/FDLproject/

[20] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. Massachusetts Institute of Technology,
1995.

[21] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Knowledge-based programs. Distributed Computing, 10(4):199-225,
1997.

[22] Joseph Y. Halpern. A note on knowledge-based programs and specifica-
tions. Distributed Computing, 13(3):145-153, 2000.

[23] Joseph Y. Halpern and Ronald Fagin. Modeling knowledge and action
in distributed systems. Distributed Computing, 3(4):159-177, 1989.

[24] Joseph Y. Halpern and Richard A. Shore. Reasoning about common
knowledge with infinitely many agents. In Proceedings of the 14th

42

IEEE Symposium on Logic in Computer Science, pages 384-393,
1999.

[25] D. Harel and R. Marelly. Come, Let's Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, New York,
2003.

[26] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[27] Isabelle home page. http://www.cl.cam.ac.uk/Research/HVG/
Isabelle.

[28] J. Klose and H. Wittke. An automata based interpretation of live se-
quence charts. In Proceedings of Seventh International Coference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS'O1), 2001.

[29] K. Koskimies and E. Makinen. Automatic synthesis of state machines
from trace diagrams. Software-Practice and Experience, 24(7):643-
658, 1994.

[30] S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-
based mechanical verification of fault-tolerant programs. In A. Arora,
editor, Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems Workshop on Self-Stabilizing Sys-
tems, Austin, TX, pages 33-40. IEEE Computer Society Press, 1999.

[31] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Comms. ACM, 21(7):558-65, 1978.

[32] Leslie Lamport. Hybrid systems in TLA+. In Grossman, Nerode, Ravn,
and Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, 1993.

[33] Leslie Lamport. The temporal logic of actions. 16(3):872-923, 1994.

[34] Leslie Lamport. Specifying Systems: The TLA + Language and Tools for
Hardware and Software Engineers. Addison-Wesley, Boston, 2003.

[35] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

[36] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, Berlin, 1992.

43

[37] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, Berlin, 1995.

[381 Z. Manna and P. Wolper. Synthesis of communicating processes from
temporal logic specifications. A CM Trans. Program. Lang. and Syst.,
6(1):68-93, 1984.

[39] R. Milner. Action structures and the ir-calculus. In Helmut Schwichten-
berg, editor, Proof and Computation, volume 139 of NATO Advanced
Study Institute, International Summer School held in Marktoberdorf,
Germany, July 20-August 1, 1993, NATO Series F, pages 219-280.
Springer, Berlin, 1994.

[40] Robin Milner. Communication and Concurrency. Prentice-Hall, London,
1989.

[41] Robin Milner. Calculi for interaction. Acta Informatica, 33(8):707-737,
1996.

[42] Jayadev Misra. A Discipline of Multiprogramming. 2001.

[43] Lawrence C. Paulson. Mechanizing UNITY in isabelle. A CM Transac-
tions on Computational Logic, 1999.

[441 A. Pnueli and R. Rosner. Distributed reactive systems are hard to syn-
thesize. In Proceedings of Thirty-first IEEE Symposium on Founda-
tions of Computer Science, pages 746-757, 1990.

[45] Shaz Qadeer and Natarajan Shankar. Verifying a self-stabilizing mutual
exclusion algorithm. In David Gries and Willem-Paul de Roever,
editors, IFIP International Conference on Programming Concepts
and Methods: PROCOMET'98, pages 424-443, Shelter Island, NY,
June 1998. Chapman & Hall.

[46] Fred B. Schneider. On Concurrent Programming. Springer-Verlag, New
York, 1997.

[47] Gerard J. Holzmann The Spin model checker: primer and reference man-
ual. Addison-Wesley, 2004.

[48] M. Y. Vardi. An automata-theoretic approach to fair realizability and
synthesis. In P. Wolper, editor, Computer Aided Verification, Pro-
ceedings of the 7th International Conference, volume 939 of Lecture
Notes in Computer Science, pages 267-292. Springer-Verlag, 1995.

44

[49] G. Winskel. Events in Computation. PhD thesis, University of Edin-
burgh, 1980.

[50] G. Winskel. An introduction to event structures. In J. W. de Bakker
et al., editors, Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, number 345 in Lecture Notes in
Computer Science, pages 364-397. Springer, 1989.

[51] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure distributed
on-line certification authority. A CM Transactions on Computer Sys-
tems, 20(4):329-368, November 2002.

[52] Job Zwiers, Willem P. de Roever, and Peter van Emde Boas. Compo-
sitionality and concurrent networks: Soundness and completeness of
a proofsystem. In ICALP 1985, pages 509-519, 1985.

A Design of the generated code

The design of the code, which is suitable for a distributed system whose
nodes and links are known at runtime, is straightforward. We generate a
package for each link, and one for each node (with a slight qualification to
be discussed later).

The package associated with a link provides

0 classes defining the messages that may be sent on the link (along with
their accompanying tags);

* interfaces Sender and Receiver defining the operations available to a
node sending and receiving on the link;

* implementations of Sender and Receiver.

Some nodes represent external actors-devices, or software not under our
control. For demonstration purposes, we generate simple virtual models of
such external actors-they allow inputs to be entered through a gui and write
outputs to a terminal. To limit the amount of time spent programming guis,
the prototype makes the simplifying restriction that each external actor is
attached to only one link.

The package associated with an "internal" node provides

45

9 a class Node that implements a message automaton-

The constructor for a Node has parameters: a ink. Receiver object for

each link ink on which it receives messages, and a ink. Sender object

for each link ink to which it sends messages.

* a Main program that creates the node and starts it running.

It is straightforward to replace a virtual actor with a real one or with a
simulator: create appropriate Receiver and Sender objects for the links to

which the actor is attached, and revise Main so that it passes in these new

objects as parameters to the constructors for nodes attached to the link.

(This phrasing assumes that any external actor will be wrapped up inside a
Java class.)

The remaining sections describe the code in slightly more detail.

A.1 The package for a link

Each link package contains a class Tag that supplies symbolic names for the

tags of all the messages that can be sent on the link, and also supplies the
name None to mean "no tag." A tag is an abstract message header. Its

underlying representation will be an integer.

For writing examples in this section, suppose that the tags for messages

send on ink are x, y, and z; and suppose that messages with tag x have type

Tx, etc.
In this case, the package ink exports the following public classes and

interfaces (with inheritance shown in the usual way by indentation):

Classes Interfaces

Tag Receiver

Tagged Sender
Tagged-x

Tagged-y
Tagged-z

send
rcv

46

A.1.1 Tags and tagged values

Class Tag merely supplies symbolic names for the tags. If no one intends to
read this generated code, there is no need for this class. But it makes the
generated code a bit clearer.

public class Tag{
public static final int None = 0;
public static final int x = 1;
public static final int y = 2;
public static final int z = 3;

The value None is a convenience meaning "no tag." So the particular tags
used in messages on link ink have unique global names of the form ink. Tag. x,
etc.

The values sent on the link are tagged values, which are objects of sub-
classes of class Tagged.

abstract public class Tagged implements Serializable{
int tag;
public Tagged(int i){

tag

By making the Tagged class Serializable, we automatically get behind-the-
scenes operations that marshal elements of its subclasses when we send them
on a socket.

Objects representing tagged values are created in the obvious way.

public class Tagged-x extends Tagged{
TLx val;
public Tagged-hello(T-x i){

super (Tag.x);
val = i;

This looks a little odd, since the class exports no methods for accessing
the members of a Tagged-x. The members, of course, have package-wide

47

visibility, and we can access them that way. We will never change the value
of a Tagged-x object once it's been created.

A.1.2 The interface Sender

The Sender interface provides, unsurprisingly, methods for sending Tagged
values.

public interface Sender {

public void sendx(T-x d);
public void send-y(T-y d);
public void sendz(TLz d);

public void close);
}

It would perhaps look a. bit more "00" for this Interface to provide a'
single method

public void send(Tagged t);

and add send() and get() methods to type Tagged, so that transmitting a
value v with tag x might be done by saying

(new Tagged-x(v)).send);

Since we are generating code, and since we are not reusing any of the classes
we generate or subclassing them, the distinction seems largely cosmetic.
Adding methods to descendants of Tagged would also tie the definitions of
Taggedix, etc., to the implementation of Send and Receive, so might lead
to a little more complexity.

The close() method-and the corresponding is-closed() query pro-
vided by Receiver-are conveniences. Using these methods, a node may
discover that its incoming links are closed and then close its outgoing links.
They suffice to allow our demonstrations to terminate gracefully.

A.1.3 The interface Receiver

The prototype expects a Receiver to accept messages as they arrive and
buffer them. It provides methods giving access to and information about the
message buffer:

48

"* is-msg() returns the tag of the top message in the buffer, if the buffer
is nonempty, and otherwise returns the value None.

"* get x() should be called only when the buffer is nonempty and its top
element has tag x, and then it removes the message and returns its
value.

" set-notice(n) supplies a "notification" object n that the receiver can
use to signal the arrival of a new message. A node can use these
notifications to avoid busy waiting.

"* The purpose of is-closed() has been described in section A.1.3.

public interface Receiver {

public int is-msgo;
public T-x get-xo;
public Ty get-yo;
public Tz get-zo;

public void setnotice(note.Note n);
public void is-closedo;

I

A.1.4 Default implementation of Sender

We describe send, an implementation of interface Sender for a link between
two internal nodes. (We don't bother to describe the implementation of
sending to the screen, which is our virtual output node.)

public class send{

/* Sets up connection */
public send() throws InterruptedException;
public closeo; /* Closes connection */

/* Send messages on the link. */
public void send-x(T-x v);

49

public void send.y(T-y v);
public void send-x(T-z v);

}

Setting up and closing the connection are not part of the formal model,
which starts with a collection of already existing nodes and links. We im-
plement sending on a link between two internal nodes as sending on and
receiving from a socket. The send operation creates a client socket, through
which it attempts to connect to an appropriate server. If send can't find the
host at the given address, it fails and quits. If it finds the host but the server
socket does not yet exist, send catches the resulting IOException, goes to
sleep for a prescribed time, and then tries again, repeatedly. Once success-
fully connected, it creates an ObjectOutputStream from that connection.
The operations send-x, etc., merely write to that output stream.

The IP address of the receiving end of the socket is supplied as a param-
eter to the code generator. The code generator chooses the port number for
this connection: it assigns different ports to all incoming links at a node,
using port numbers 1024 and above. (Since an application may want to use
some of these higher port numbers for other purposes, the code generator
should also be supplied with a list of port numbers to avoid. We have not
implemented that.) The operations of the corresponding rcv class will listen
on that port.

We have not tried to accommodate specifying and responding to all the
errors that might arise when a connection is being set up or when a connection
breaks.

A.1.5 Default implementation of Receiver link

We describe rcv, the implementation of interface Receiver, whether the
source of the link is a node sending messages on a socket or a virtual node
modeled as a gui. Comments will indicate the differences.

Members of rcv A rcv class creates

"* buffer, to hold arriving messages (so it's actually a buffer of Tagged
elements);

"* a Note object note with sleep and wake methods, which will allow us
to implement the top-level loop of a node without using a busy wait;

50

"* a new thread receive, that listens on the appropriate port and places
arriving messages in buffer, signaling with note.wake() when a new
message arrives;

"* is-notice, a boolean that will be set when its note object has been
created;

"* and, if messages are arriving on a socket,

- listener, a ServerSocket that listens on the appropriate port

- oin, an input stream from listener

The code generator chooses a port number and hardwires the same port
number into the code for the corresponding sender.

Vector buffer;
note.Note notice;
boolean closed;

/* Objects needed if messages come from a socket. */

ServerSocket listener;

ObjectInputStream oin;
Thread receiver;

The constructor If the link is a socket, we create a new thread receiver,
which listens on the socket and puts incoming messages into buffer. If
the link gets its messages from a gui, then the sender itself directly places
messages'in the buffer. (Compare the two different fill-buffer operations.)

public rcv(note.Note n){
try f

closed = false;
buffer = new Vectoro;

/* Initializations of socket-related objects. */

51

listener = new ServerSocket(...);

oin = new ObjectInputStream(...);
receiver = new Thread(

new RunnableO(public void runo{fillbuffero;}}

receiver.starto;
catch f..
}

fill-buffer The fill-buffer operation adds a message to buffer and
signals a wakeup. This method synchronizes on buffer, because different
threads can access buffer.

If the input comes from a gui, rcv will make fill-buffer visible to send,
which can use it to add a message directly to the buffer.

void fillbuffer(Tagged x){
synchronized (buffer) (buffer. add (x) ; }
notice.wakeo;

}

If the input comes from a socket, fill-buffer is a loop that runs in its
own thread and adds messages to buffer as they arrive.

private void fillbufferO{
Tagged tmp;
try {

while (true){
tmp = (Tagged)oin.readObjecto;
synchronized(buffer) (buffer. add(tmp); }
while (!notice){

Thread. currentThreado(). sleep(1000);
} /* This busy wait occurs only once. */
notice.wakeo;

}
}
catch (EOFException e){

closed = true;

52

notice.wakeo;
}
catch (Exception e){... }

The not very elegant inner loop forces the thread running fillbuffer to
wait until the notice object has been created. Once it has been created, the
inner loop is a no-op.

The other methods of rcv The set-notice method supplies a value for
the notice member and sets is-notice to true. The methods isimsgo,
and get*() are described in section A.1.3. The implementations are trivial
and the same in both cases. It necessary that is-msg() and the get*()
methods synchronize on buffer).

A.2 The package for a node

The package for each node defines a class Node that is independent of how
its links are implemented, and a package Main that instantiates Node with
implementations of the link ends to which it is attached.

A node will consist of two threads, each executing a loop. One loop,
encapsulated in a Receiver object, will place incoming messages in a buffer;
and the other, which we call "main loop," will repeatedly check for eligible
actions and execute them. We try to avoid busy waiting in the main loop
when there is nothing for it to do.

Suppose that a node has

"* incoming links inl and inl

"* outgoing link outl

"* state variables sl and s2 of types T1 and T2

A.2.1 Data members

For every abstract state variable s of the message automaton we declare two
member variables, s and s-next. Each action of the node will proceed by
computing the next value for s and storing it in s-next; sending any required
messages (whose values may depend of the original value of s, which is as

53

yet unchanged); and then copying s-next into s. In many cases it will be
possible to optimize the copying step away and modify s directly.

The other member data consists of

"* instances of the link ends to which the node is attached

"* control variables for receiving notifications and keeping track of progress

"* a variable for each action, to store the value it returns

public class Node implements Runnable {
// state variables -- current value and next value

T1 sl, next_sl;
T2 s2, next.s2;

// ends of links

outl.Sender toouti;
inl.Receiver frominl;
in2.Receiver from-in2;

// action values
Vi actl-value;
V1 act2_value;

// control variables
boolean progress;
note.Note notice;

}

A.2.2 Constructing a Node

The parameters to Node are implementations of the appropriate link ends.
Most of the task of setting up the links will be done in the Main program,
when it creates Sender and Receiver objects; but the node must supply the
Receivers with a notification object.

54

// constructor
Node(inl.Receiver froml, in2.Receiver from2, outl.Sender tol)

throws InterruptedException {
I/ initialize state variables

... // Default initial values defined by formal model

progress = false;

// set up link ends
notice = new note.Noteo;
froml.set-notice(notice);
from2.set-notice(notice);

}

There's one subtlety in setting up the link ends-namely, doing it in the
right order. That might depend on the implementation of the link ends, so
the hard-coded order in which this is currently done is a design flaw.

To see the problem, consider the case in which links are sockets and, as in
our default implementations, the attempt to set up a client socket at the input
end of a link persists until the receiving end has set up the corresponding
server socket. So, if we have links

lnkl: M -> N lnk2: N -> M

and M tries to set up the sending end of Inkl, while N tries to set up the
sending end of lnk2, the setup process will deadlock. The code generator
constructs a local ordering at each node that will avoid such deadlocks.

A.2.3 Auxiliary operations

The auxiliary operations compute

"* The precondition and value of each action: check-actl returns false if
there is no value that, in the current state, satisfies the precondition for
actl; otherwise, returns true and updates actl-value appropriately.

"* The effect of each action: do-actl performs action 1 and sets progress
to true.

"* The response to an incoming message on each link (depending on its
tag):

55

- check-inl 0 examines the buffer for link 1 and, if it finds a mes-

sage with tag x, invokes do-inl_x

- do-inlx performs the response to an incoming message on link 1
with tag x and sets progress to true.

// Look for a solution to precondition of an action

boolean check-actl() {...}
boolean check-act2(){...I

// Check incoming links and, if appropriate, respond

void check-inl(){

switch(froml.is-msg()){

case inl.Tag.None: break;
case inl.Tag.x: {

dojinLx(froml.get_xO)
break;

}

case:

void check-in2(){.. .

// Actions (triggered by acts or by messages)

void doact1({

// compute next value for state variables

// do any sends
// update current values to next values
progress = true;

I

void do-act2(){. ...

56

void doinl-x(TLx val){
// compute next value for state variables

// do any sends
// update current values to next values

progress = true;
}

// Bookkeeping for link status

// Check whether all in-links are closed

boolean allInLinksClosed() {
boolean answer;
answer = true;
answer = answer & froml.isclosedo & from2.isclosedo;

return answer;

//close all out-links
public void closeAllOutLinkso f

tol.closeo;
}

A.2.4 The main loop

Abstractly, a message automaton loop repeatedly chooses some eligible ac-

tion or some incoming message and performs the action or responds to the
message. The formal model only requires only that these choices be "fair"-

it cannot happen that an action or response is permanently enabled but
never performed. Any schedule fair in this sense will be correct. Our default

implementation is essentially round-robin.

In our default implementation, each iteration of the main loop checks,

in succession, the precondition of each local action and, if the precondition

is true, executes it. (Note that these executions may change the state and

therefore change the status of subsequent preconditions.) Then it checks the
message buffer for each incoming link and, for each buffer that is nonempty,

57

responds to the topmost message.
We complicate this in two ways: First, we wish to avoid busy waiting

when there's nothing for the automaton to do. Second, we wish to provide a
graceful way of terminating simple demonstrations. (Think of this graceful
exit as a stand-in for shutting down a node in a more complex situation.)

We say that an iteration of the loop makes progress if and only if it
executed at least one local action or response. A variable progress keeps
track of this. The local state of an automaton can be affected only by an
iteration that makes progress. If an iteration fails to make progress, there is
nothing further for the automaton to do until a new message arrives. (Lack
of progress means, in particular, that the message buffer is empty.) So the
loop suspends itself, to be awakened when a new message arrives. If an
iteration does not make progress and the node learns that, in addition, all
its incoming links have closed-so that no more messages will arrive-it will
close its outgoing links and terminate.

Under the hood, suspension is done with Java's wait(0 statement and
awakening with a corresponding notif yAll (). Both the suspending/awakening
mechanism and the mechanism for shutting down may, if implemented naively,
result in race conditions. Consider, for example, the following sequence of
events:

Main loop Receiver thread

no progress
new message
notifyAll ()

wait ()
no more messages

The notifyAll() occurs before the main loop suspends itself by invoking
wait 0. So, if no more messages arrive, the main loop is never awakened from
its wait() statement, and therefore never responds to the final message.

To avoid this sort of problem we provide the appropriate coordination
with the synchronizing operations consider-sleep () and wake () of the Note
object that the two threads share. In particular, the progress variable is a
member of that object.

Section C contains a SPIN model [47] of our code and describes how we
use SPIN to verify (to a moral certainty) that our code is correct.

58

// main loop
public void runo{

boolean done;
done = false;
while(!done){

notice.progress = false;
// check each local action
if (check-actl()) { do-actl();}
if (checkact2()) { do-act2();}

// check each incoming link
check-inl();
check-in2();
if (! notice.progress & allInLinksClosedo) { done = true; I
else { notice.consider-sleepo; }
}

}// end while
closeAllOutLinkso;

}//end run

A.3 The package note

A Note object packages up our little protocol for suspending and awakening.

public class Note {
public boolean progress = false;
public synchronized void consider.sleep() {

if (! progress) {try {
wait (;

}
catch (InterruptedException e) {}
}

public synchronized void wake 0 {
progress = true;
notifyAll 0;

}

59

B Code for leader election in a ring

Since the code is completely symmetric, we show only the packages for node
a, for the link aXbXl from node a to node b, and the link aXoutputXl from a
to external output. We also show the trivial, handwritten configuration file
that assigns nodes to processors.

B.1 Configuration file

In this case, we execute the five nodes on two machines, and refer to the
machines by their network names rather than their IP addresses.

// comments and white space are ignored
a = "mojave"
c = "mojave"
e = "mojave"
b = "nuprll"
d = "nuprlIl"

// if destinations are on same host then ports must be distinct
a,b,"1" = 1024
c,d,"l" = 1025
e,a,1"1" = 1024
b,c,"l" = 1025
d,e, "" = 1026

B.2 Package a

B.2.1 Class Main

package a;
public class Main {
public MainO{}
public static void main(String[l args) {
Node nd;
try {
aXbXl.send el = new aXbXl.send);

60

aXoutputXl.send e2 = new aXoutputXl.sendo);
eXaXl.rcv e3 = new eXaXl.rcvo;
nd = new Node(el,e2,e3);

Thread node = new Thread(nd);
node.starto;
} catch (InterruptedException e) {
}
}// end main
}//end Main

B.2.2 Class Node

package a;
import java.util.Vector;
import java.lang.Integer;
import note.*;
import javax.swing.*;
public class Node implements Runnable {
// state variables -- current and next
boolean donel, next-donel;
int me, next-me;
boolean trigger, next-trigger;
// ends of links
aXbX1.Sender toXbXl;
aXoutputXl.Sender toXoutputXl;
eXaXi.Receiver fromXeXl;
// action values
boolean sendDASHmeXvalue;
boolean leaderXvalue;
note.Note notice;
// constructor
Node(aXbXl.Sender XtoXbX1, aXoutputXl.Sender XtoXoutputXl,
eXaXl.Receiver XfromXeXl) throws InterruptedException {
// initialize state variables
donel = false;
next-donel = false;

me = 0;
next-me = 0;

trigger = false;
nexttrigger = false;

61

// set up link ends
notice = new note.Noteo;
toXbXl = XtoXbXl;

toXoutputXl = XtoXoutputXl;
fromXeXl = XfromXeXl;
fromXeXl.set-notice(notice);
notice.progress = false;
}

boolean checkXsendDASHmeC) {
if (
(donel ? false : true)
){f

sendDASH-meXvalue = true;
return true;}
else {return false;}

}
boolean checkXleadero) {
if C
(trigger ? true : false)

leaderXvalue = true;
return true;}
else {return false;}
}
void checkXfromXeXl(){
switch(fromXeXl.is-msgO){
case eXaXl.Tag.None: break;
case eXaXl.Tag.vote: {
doXfromXeXlXvote(fromXeXl.get.voteC));
break; }
} //end switch
}//end check

void doXsendDASH-meC) {
// update nexts
next-donel = true;

// do any sends
toXbXl.sendvote(me);
// assign currents

62

donel = next-donel;
notice.progress = true;

}

void doXfromXeXlXvote(int val) {
// update nexts

next-trigger = ((me == val) ? true trigger);

// do any sends
if (

(me < val)
){f

toXbXl.sendvote(val);

} else {
}

// assign currents

trigger = next-trigger;
notice.progress = true;

}

void doXleader() {
II update nexts

II do any sends
toXoutputXl.sendleader(me);

// assign currents
notice.progress = true;

//check if all in-links are closed

boolean allInLinksClosed() {

boolean answer;
answer = true;

answer = answer & fromXeXi.isclosedo;

return answer;

}//end allInLnksClosed

//close all out-links

public void closeAllOutLinkso) {
toXbXl.close();

toXoutputXl.close)0;

}//end closeAllOutLinks

// main loop

63

public void run){
boolean done;
done = false;

while(!done){
notice.progress = false;
// check each local action
if (checkXsendDASH-me()) { doXsendDASH-meC);}
if (checkXleadero) { doXleadero;}
// check each incoming link
checkXfromXeXl();
if (! notice.progress & allInLinksClosedo) {
System.out.println("a: all in-links closed & no progess possible.");
System.out.println("a exiting.");

done = true; }
else {

System.out.println("a sleeping.");
notice.consider.sleepo;
System.out.println("a awake.");
}// else
}// end while
closeAllOutLinkso;
}//end run

}// end Node

B.3 Package aXbXl

B.3.1 Interface Receiver

package aXbXl;
public interface Receiver {
public void set-notice(note.Note n);
public int ismsgO;
public int get.voteo);
public boolean isclosedO;
I

B.3.2 Class rcv

package aXbXi;

64

import java.net.*;
import java.io.*;
import java.util.Vector;
import note.*;
import config.*;
public class rcv implements Receiver {
ServerSocket listener;
Socket client;
InputStream in;
ObjectInputStream oin;
Vector buffer;
Thread receiver;
note.Note notice;
boolean closed;
boolean is-notice = false;
public rcvo){
try {
closed = false;
listener = new ServerSocket(config.Config.port("a", "b" ,"l"));
client = listener.accepto;
in = client.getlnputStreamo);
oin = new ObjectInputStream(in);
buffer = new Vectoro;
receiver = new Thread(
new Runnableo{public void runOffillbufferO;}}

receiver.starto;
System.out.println("aXbXl receiver connected.");

}
catch (UnknownHostException e){
System.out.println("aXbXl.rcv:"+ e + "Can't find host.");

}
catch (IOException e){
System.out.println("aXbXl.rcv:"+ e + "Error connecting to host.");
}
}

public void set-notice(note.Note n){
notice = n;

is-notice = true;

65

private void fillbuffer({

Tagged tmp;

try {
while(true){

tmp = (Tagged)oin.readObjecto;

synchronized(buffer){buffer.add(tmp) ;}
System.out.println("aXbXl calling wake.");

while(!isnotice) {Thread.currentThread().sleep(1000);}

notice.wakeo;

}
}
catch (EOFException e){
System.out.println("Link aXbX1 closed.");

closed = true;

notice.wakeo;
I
catch (Exception e){

System.out.println("fillbuffer@aXbXl:"+ e +

"Error reading from host or queueing input.");

}
}
public int ismsgO{

int tag;
synchronized(buffer){

if (!buffer.isEmptyo)

{ tag = ((Tagged)buffer.firstElemento)).tag;}
else { tag = Tag.None;}

}
return tag;
I
public int get.voteo{

int

val;

synchronized(buffer){

val = ((Tagged-vote)buffer.firstElemento)).val;
buffer.remove(O);

}
return val;

66

}
public boolean is.closed() {

return closed;
}
}

B.3.3 Interface Sender

package aXbXl;
public interface Sender {
public void send-vote(int d);
public void closeO;

}

B.3.4 Class send

package aXbXl;
import java.net.*;
import java.io.*;
import java.lang.Thread.*;
import config.*;
public class'send implements Sender{
Socket sock;
OutputStream out;
0bjectOutputStream oout;
InetAddress inaddr;
InetSocketAddress addr;
public send() throws InterruptedException {
boolean done = false;
while (!done) {
try {
inaddr = InetAddress.getByName(config.Config.locationC("b"));
addr = new InetSocketAddress(inaddr,config.Config.port("a", "b", "1l"));
sock = new Socketo;
sock.connect(addr,0);
out = sock.getOutputStreamo);
oout = new ObjectOutputStream(out);
done = true;
System.out.println("aXbXl sender connected.");

}

67

catch (UnknownHostException e){
System.out.println("aXbXl.send:"+ e + "Can't find host.");
done = true;

}
catch (IQException e){
Thread.currentThread().sleep(1000);
}
}
}
public void send.vote(int d){
try {
System.out.println("aXbXl sending " + d + " with tag vote.");
oout.writeObject(new Tagged-vote(d));

}
catch (IOException e){
System.out.println("aXbXl:"+ e + "Error in output stream.");

}
catch (Exception e)f
System.out.println("aXbXl:"+ e + "Error: This can't happen!");
}
}
public void close){
try {sock.closeo;}
catch (IOException e) { }
}//end close
}//end send class

B.3.5 Class Tag

package aXbXl;
public class Tag{
public static final int None = 0;
public static final int vote = 1;

public Tago{}
}

B.3.6 Class Tagged

package aXbXl;
import java.io.*;

68

abstract public class Tagged implements Serializable{

int tag;

public Tagged(int i){

tag = i;
}
}

B.3.7 Class Tagged-vote

package aXbXl;

import java.io.*;
public class Tagged-vote extends Tagged{

int val;

public Tagged-vote(int i){

super(Tag.vote);

val = i;

}

B.4 Package aXoutputX1

B.4.1 Interface Sender

package aXoutputXl;

public interface Sender {
public void send-leader(int d);

public void closeo;

}

B.4.2 Class send

package aXoutputX1;

public class send implements Sender{

public void send-leader(int v)
{System.out.println("Outputl: leader(" + v +
public void close){System.out.println("Outputl closed.");}

public send() {
}
}

69

B.4.3 Interface Receiver

package aXoutputX1;
public interface Receiver {
public void set-notice(note.Note n);
public int is-msgo;
public int get-leadero);
public boolean is-closedO;
I

B.4.4 Class Tag

package aXoutputXl;
public class Tag{
public static final int None = 0;
public static final int leader = 1;
public TagC){}
}

B.4.5 Class Tagged

package aXoutputXl;
import java.io.*;
abstract public class Tagged implements Serializable{
int tag;
public Tagged(int i){
tag =
}

B.4.6 Class Tagged-leader

package aXoutputXl;
import java.io.*;
public class Tagged-leader extends Tagged{
int val;
public Tagged-leader(int i){
super(Tag.leader);
val = i;

7

70

C A verification of the sleep/wake/terminate
protocol

We model the essence of our sleep/wake/terminate protocol in Promela, the
modeling language of SPIN, and use the SPIN model-checker to verify its
key property. We want to show that problems like the one described in
section A.2.4 cannot occur-that is, the behavior on every link is correct in
the sense that all messages received on that link are responded to.

We simplify the model by introducing several sound abstractions:

1. The only relevant program variables are progress, done (which de-
termines when the node will terminate its main loop), and buffer (in
which received messages are stored).

2. We model only one link. As explained in (5), that is sufficient.

3. The content of messages is irrelevant. All that's relevant is the size of
the buffer. Therefore, we model the response to a message simply as
the act of removing the message from the buffer.

4. We model the operation determining whether all incoming links are
closed by a boolean variable, allInLinksClosed, which may be set
nondeterministically to true at any point after it is guaranteed that
no more messages will arrive on the link we model.

5. Local actions, or responses to messages on other links, can only affect
the variable progress, and can do that only by setting it to true. We
model those effects by statements that, at appropriate times, nonde-
terministically choose whether or not to execute progress=true.

The model is parameterized by an integer N, the total number of messages
received on the link. Here lies the formal gap in our argument: we rely on
the intuitive truth that, if there is a timing problem, it can be exhibited by
an execution sequence containing not terribly many messages. (And, in an
act of overkill, we verify the model for values of N up to 50.)

Execution starts with buffer empty. The property we want to show is:

Every possible execution will eventually reach a state in which
the message buffer is empty and remains so permanently.

71

That means that all incoming messages will be processed.
Thus, execution may set allInLinksClosed to true at any time after

N messages have been inserted into buffer-or may never set it to true.
This covers all possibilities: that the closing of incoming links occurs, but
the discovery of that fact is delayed arbitrarily; that it occurs but is never
discovered; or that some links remain open after the link we that we are
modeling finishes.

The following SPIN model is straightforward, and should be easily under-
stood by anyone who knows Promela. We model the wait 0 and not if yAll 0
actions as follows:

"* The declaration of the process representing the main thread says that
it is active "provided (!waiting)"

"* The main thread executes wait() by setting waiting to true.

* The receiver thread executes notifyAll 0 by setting waiting to false.

The synchronized methods consider-sleep and wake explicitly acquire
and release a lock-remembering that a thread gives up its locks if it executes
a wake 0.

#define true 1
#define false 0

/* The definition of 'empty-buffer' is used to state the specification
we will check:

<>[]emptybuffer

Strictly speaking, we're checking that the negation of this is a
valid never-claim. */

#define empty-buffer (len(buffer)==O)

/* Variables modeling operating system state. */

bit waiting, locked;

72

/* Macros modeling operating system actions. */

#define wait waiting=true
#define notifyAll waiting=false

#define get-lock locked=true
#define release-lock locked=false

/* The two synchronized methods, consider-sleep and wake. */

#define consider-sleep
d_step{! locked -> get_lock };
if

: progress -> d-step{ release-lock; wait };.
d_step{! locked -> get_lock }

else -> skip
fi;
release-lock

#define wake
d.step{! locked -> get-lock };
progress = true;
notifyAll;
release-lock

/* Counts down from N, to keep track of the messages sent.
After N messages, the sender will stop. */

int counter;

/* The remaining variables occur in the program. */

int progress, done, allInLinksClosed;

/* The message buffer maintained by the receiver.
The value of 'N' is supplied on SPIN's command line. */

73

chan buffer = [N] of {bit};

proctype main() provided (! waiting) {
done = false;
do

progress = false;

/* Some local action or a response on another
link might result in progress. */

if
progress = true
skip

fi;

/* Now check for messages on this link. */
if

atomic{buffer?[_] -> buffer?_j; /* SPIN idiom */
progress = true
else -> skip

fi;

/* Some other local action or a response on another
link might result in progress. */

if
progress = true

skip
fi;

/* The termination check */
if

! progress && allInLinksClosed -> done = true

else -> skip
fi;

consider-sleep
od

}

74

proctype receivero{
do

counter == 0 -> break
else -> buffer!O; counter--; wake

od; /* It doesn't matter what value is
put in the buffer. */

/* Once all messages are sent on this link,
it may or may not happen that all in links
become closed. */

if
allInLinksClosed = true
skip

fi

init{ waiting=false; counter=N; allInLinksClosed=false;
run maino; run receiver() }

75

